

Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM[®]-Arrays

6th International Conference on Trends in Welding Research Friction Stir Welding: Session 27

April 17, 2002

Authors: David G. Kinchen, Lockheed Martin; Dr. Neil Goldfine, Dr. Vladimir Zilberstein & David Grundy JENTEK Sensors, Inc., Email: jentek@shore.net Demonstrate capability of high-resolution MWM⁻Arrays to map microstructurally different regions for aluminum panels with Friction Stir Welds (FSW)

Demonstrate capability of high-resolution MWM-Arrays to detect and size lack of penetration (LOP) in FSWs

Investigate capability of high-resolution MWM-Arrays to estimate LOP size

Example MWM-Array® Configurations

High Resolution MWM-Array Technology

- The MWM has unique advantages:
 - Thin and flexible
 - Lift-off compensated
 - Arrays produce high resolution images
 - Reduced calibration and training requirements
 - Bidirectional measurements

Parallel Architecture Instrumentation and MWM-Array Probe for High-Resolution Imaging

JENTEK Sensors, Inc. Systems

Overview of the JENTEK GridStation and Scanner Setup for the FSW inspection

Conductivity/Lift-off Grid for Characterization of FSWs at 3.98 MHz

MWM-Array Orientations for Scanning of a Friction Stir Weld

MWM-Array conductivity image of FSW in blind test panel B01A

Conductivity image and profile for similar metal FSW

Conductivity image and profile for similar metal FSW

Conductivity image and profile for similar metal FSW with an offset section

Conductivity image and profile for dissimilar metal FSW with an offset section

Conductivity image and profile for a similar metal FSW contaminated by the anvil

Conductivity image and profile for *nominally* similar FSW

Conductivity image for the FSW in blind test panel A01

Conductivity profile was not generated for this panel scanned at the Marshall Space Flight Center due to lack of baseline data for rescaling. This is not expected in the future application when the required baseline data are not likely to be missing.

Conductivity image and profile for a 7-in. long section of the FSW in blind test panel B01A

Conductivity image and profile for a 3-in. long section of FSW in blind test panel B01A

Conductivity image and profile for a 7 1/2-in. long section of FSW in blind test panel B01A

Conductivity image and profile for blind test panel BL1

Conductivity image and profile for blind test panel BL2

Conductivity profile schematically showing the midsection width definition for a similar metal FSW

Correlation between the midsection width and LOP for similar metal FSWs

Midsection width along the similar metal "tapered" FSW

Conclusions

JENTEK has demonstrated that **MWM-Array** (Meandering Winding Magnetometer Array) technology can provide an **effective tool** for **inspection of FSWs**, particularly for **detection and sizing of LOP** defects.

For similar aluminum alloy welds, a consistent relationship between estimated backside midsection widths and LOP depth has been demonstrated.

For dissimilar aluminum alloy welds, detection of LOP above 0.03-in. in depth appears likely.